Steel

Non grain oriented electrical steel powercore®

Product range

powercore[®] is a world-leading brand for innovative high-tech electrical steel products. It is used throughout the energy value chain and makes a relevant contribution to meeting ecological requirements in the electrical engineering sector. It is also used to enhance energy efficiency in e-mobility applications. As one of the market leaders for non-oriented electrical steel, we do everything to ensure that our powercore[®] products make an important contribution to reducing pollution and conserving resources in both the generation and use of energy.

Contents

Research and development	04
Services	06
Applications	08
Non-oriented electrical steel	10
Product requirements and properties	12
Product specifications	14

Our quality standards can be summed up easily: very high.

High-quality steel products do not come about by chance; they are the result of a mature, precise, and responsible approach throughout the manufacturing process.

Production site

Bochum

in Germany

The advanced technology used at our Bochum site and the continuous improvement of our electrical steel at our in-house E-Mobility Center Drives enable us to meet even the most exacting customer requirements. Our high-tech powercore® electrical steel with the insulation coatings needed for its many different applications is delivered to customers around the world from Bochum.

International site

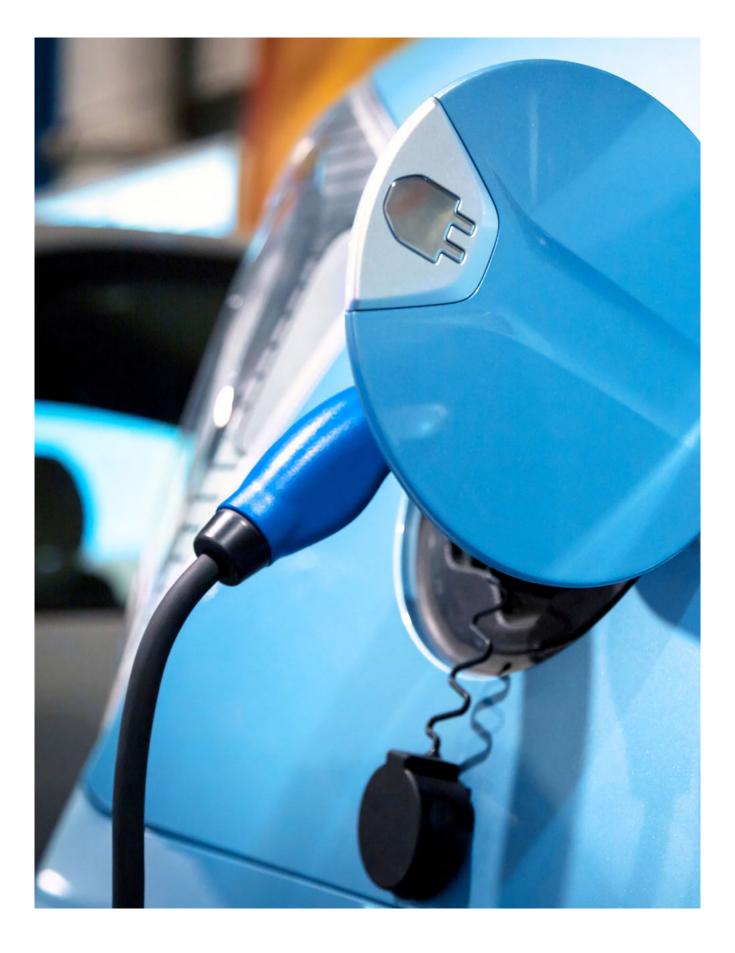
 \bigcirc For more information, visit us at:

www.thyssenkrupp-steel.com

General note

Information regarding standards refers to the latest version as at the printing date. All statements as to the properties or utilization of materials and products are for the purposes of description only. Guarantees in respect of the existence of certain properties or utilization of materials are only valid if agreed upon in writing.

Responsible production.

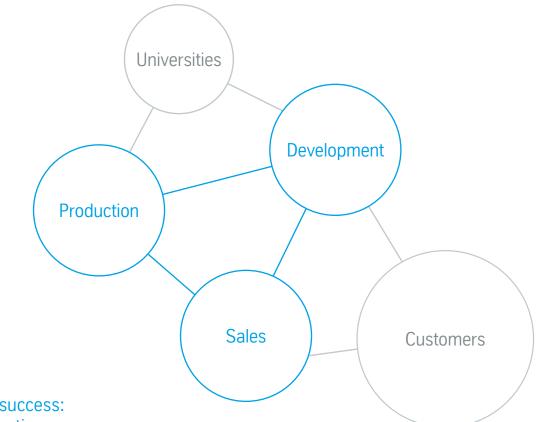

At thyssenkrupp we have the most advanced technologies and processes at our disposal to ensure climate- and resourceefficient production and consistently high product quality at all stages. For example, we have the world's cleanest coke plant, advanced blast furnaces to produce pig iron, and numerous specialty plants to make and process steel.

Wealth of expertise goes into outstanding products.

We have one particular skill that is invaluable: With our highly qualified employees and expertise accumulated over more than 200 years of steelmaking, our innovative capabilities are second to none. This is ultimately what enables us to produce the high-quality, eco-friendly, cost-efficient materials that frequently give our customers an edge on their markets. Equally important is the fact that all our products can be recycled efficiently.



Accelerating the advance of e-mobility.


Research and development in all areas using the most advanced methods available is essential when it comes to achieving, maintaining, and extending a technological edge. For example, to develop innovative materials for e-mobility, we have installed an electric motor test rig at our E-Mobility Center Drives in Bochum that enables us to continuously examine the properties of our materials. Our engineers analyze and evaluate the results and then use their findings as the basis for further improvements in the quest for the optimum material for e-mobility.

Well connected beyond company boundaries.

Key to our innovative strength is the way we combine and connect capabilities and capacities, both within our organization and with external partners. This includes intensive exchanges between our sales, development, and production teams, close partnerships with our customers, and cooperation between our scientists and engineers and selected universities and other research establishments. By combining expertise in this way, we can develop high-tech steels, materials, coatings, and processes in advanced laboratory and pilot facilities to achieve even higher quality.

Closeness to customers drives quality.

Firmly focused on success: teamwork in all directions.

In general our technology, innovation, and sales teams are focused as a unit on meeting our customers' standards and requirements. In cases calling for even greater efficiency and speed, we create simultaneous engineering project teams. We have also partnered with the Ruhr University Bochum to set up the Interdisciplinary Center for Advanced Materials Simulation (ICAMS). Researchers there use groundbreaking technology to optimize material properties.

And because you can never do too much to improve efficiency even further, in addition to the customary advice on customerspecific products and applications, we also provide customer and innovation workshops, which have already proved very successful. Key to constant improvements in product development: Our network combines internal and external expertise.

Constant dialogue for e-mobility.

Advancing e-mobility is part of our everyday business. That's why the mobility specialists at our dedicated E-Mobility Center Drives are working to design electric motors using non-oriented electrical steel that are even more efficient and powerful – in constant dialogue with our development partners, especially in the auto industry. Our powercore® Explorer helps our partners gain a deeper insight into the properties of our materials so as to find the ideal grade for their applications.

Our non-oriented electrical steel helps us move forward in many areas.

Electrical energy is an important part of our lives – at work as well as at home. Our non-oriented powercore[®] electrical steel is used in a wide range of sectors, both in the generation of energy and in products that consume it.

C

Cars/trucks

Another application that is growing in importance is e-mobility, where the requirement is for motors that are small yet powerful enough to give vehicles a high range. But powercore[®] is also an essential ingredient of conventionally powered cars and trucks, where it is increasingly used, for example, in motors for air-conditioning systems, gasoline pumps, and even wing mirrors.

Energy

In the energy generation sector, powercore[®] is mainly used in all kinds of generators to increase performance and efficiency.

Appliances

Electric motors with powercore[®] are to be found in virtually all homes: in hairdryers, small kitchen appliances, washing machines, and many other electrical devices.

Non-oriented electrical steel

Non-oriented electrical steel is an innovative, soft magnetic steel used to concentrate the magnetic flux in electrical machines that generate or use electrical energy.

> powercore[®] AP grades

Highlights properties

powercore® K grades

powercore® A grades Electrical steel for e-mobility and high frequencies

Your contacts

Sales NO P: +49 203 52-24627

thyssenkrupp Steel Europe AG Kaiser-Wilhelm-Strasse 100 47166 Duisburg, Germany

Insulation coatings stabolit®

Width/thickness variations, geometric properties

Conversion table

stabosol[®] – Adhesive system for large-scale automotive production

powercore® PP grades

Excellent properties.

Our non-oriented powercore[®] electrical steels are highefficiency materials that deliver benefits throughout the energy value chain, both in electric motors and appliances and in generators used to convert a wide range of energies.

Magnetic or mechanical: Our powercore® has the properties that make a difference. The fully finished grades for electric drive motors offer ideal magnetic properties even prior to stamping: high magnetic polarization, low eddy current losses, and good thermal conductivity. The semi-finished grades for use in household appliances or hermetic motors gain their properties after stamping and thus offer good magnetic conductivity at very low losses. With a homogeneous microstructure and precisely defined silicon and aluminum contents, the soft magnetic powercore® grades with their very flat strip profile are the ideal solution for electric motors.

Production sites

Bochum

Motta Visconti

Higher performance with the same energy consumption

Concentrated energy

Non-oriented electrical steels are used in the generation and consumption of electrical energy. The efficiency of electric-powered machines is influenced in particular by the magnetic properties of the electrical steel. Our powercore[®] products allow electric motors with extremely high efficiency – which helps conserve resources and protect the environment. These high-tech electrical steels are characterized by excellent processing properties, outstanding magnetic characteristics, and very high energy efficiency.

powercore[®] A grades

In fully finished powercore[®] standard grades, all important quality features are fully developed. In many cases the magnetic properties are better than those specified in the standards.

Thanks to state-of-the-art process technology and reliable process control, all product properties are extremely uniform. The use of our hot strip as a starting material allows low core losses with low silicon and aluminum content. As saturation polarization increases with reduced alloy contents, our grades generally display higher polarization values in the upper magnetization range despite the low core losses.

		Thickness	Density	Max. Co	ore loss			Min. Po	larization	
		[mm]	[kg/dm³]	[W/kg] a	at	[W/lb] a	t	[T] at		
				50 Hz		60 Hz		2,500	5,000	10,000
				1.5 T	1.0 T	1.5 T	1.0 T	[A/m]	[A/m]	[A/m]
DIN EN 10106										
Steel grade designation	Standard designation									
powercore® M235-35A	M235-35A	0.35	7.60	2.35	0.95	1.35	0.55	1.49	1.60	1.70
powercore [®] M250-35A	M250-35A	0.35	7.60	2.50	1.05	1.44	0.59	1.49	1.60	1.70
oowercore® M270-35A	M270-35A	0.35	7.65	2.70	1.10	1.55	0.63	1.49	1.60	1.70
oowercore® M300-35A	M300-35A	0.35	7.65	3.00	1.20	1.72	0.69	1.49	1.60	1.70
oowercore® M330-35A	M330-35A	0.35	7.65	3.30	1.30	1.90	0.75	1.49	1.60	1.70
oowercore® M250-50A	M250-50A	0.50	7.60	2.50	1.05	1.44	0.59	1.49	1.60	1.70
oowercore [®] M270-50A	M270-50A	0.50	7.60	2.70	1.10	1.55	0.63	1.49	1.60	1.70
oowercore® M290-50A	M290-50A	0.50	7.60	2.90	1.15	1.67	0.66	1.49	1.60	1.70
oowercore [®] M310-50A	M310-50A	0.50	7.65	3.10	1.25	1.78	0.72	1.49	1.60	1.70
powercore® M330-50A	M330-50A	0.50	7.65	3.30	1.35	1.90	0.78	1.49	1.60	1.70

		Thickness	Density	Max. Co	re loss			Min. Pol	arization	
		[mm]	[kg/dm³]	[W/kg] at	:	[W/lb] a	t	[T] at		
				50 Hz		60 Hz		2,500	5,000	10,000
				1.5 T	1.0 T	1.5 T	1.0 T	[A/m]	[A/m]	[A/m]
DIN EN 10106										
Steel grade designation	Standard designation									
powercore® M350-50A	M350-50A	0.50	7.65	3.50	1.50	2.01	0.86	1.50	1.60	1.70
powercore® M400-50A	M400-50A	0.50	7.70	4.00	1.70	2.30	0.98	1.53	1.63	1.73
oowercore® M470-50A	M470-50A	0.50	7.70	4.70	2.00	2.70	1.15	1.54	1.64	1.74
powercore® M530-50A	M530-50A	0.50	7.70	5.30	2.30	3.05	1.32	1.56	1.65	1.75
powercore® M600-50A	M600-50A	0.50	7.75	6.00	2.60	3.45	1.49	1.57	1.66	1.76
powercore® M700-50A	M700-50A	0.50	7.80	7.00	3.00	4.02	1.72	1.60	1.69	1.77
oowercore® M800-50A	M800-50A	0.50	7.80	8.00	3.60	4.60	2.07	1.60	1.70	1.78
powercore® M940-50A	M940-50A	0.50	7.85	9.40	4.20	5.40	2.41	1.62	1.72	1.81
oowercore® M310-65A	M310-65A	0.65	7.60	3.10	1.25	1.78	0.72	1.49	1.60	1.70
oowercore® M330-65A	M330-65A	0.65	7.60	3.30	1.35	1.90	0.78	1.49	1.60	1.70
oowercore® M350-65A	M350-65A	0.65	7.60	3.50	1.50	2.01	0.86	1.49	1.60	1.70
powercore® M400-65A	M400-65A	0.65	7.65	4.00	1.70	2.30	0.98	1.52	1.62	1.72
oowercore® M470-65A	M470-65A	0.65	7.65	4.70	2.00	2.70	1.15	1.53	1.63	1.73
oowercore® M530-65A	M530-65A	0.65	7.70	5.30	2.30	3.05	1.32	1.54	1.64	1.74
oowercore® M600-65A	M600-65A	0.65	7.75	6.00	2.60	3.45	1.49	1.56	1.66	1.76
oowercore® M700-65A	M700-65A	0.65	7.75	7.00	3.00	4.02	1.72	1.57	1.67	1.76
oowercore® M800-65A	M800-65A	0.65	7.80	8.00	3.60	4.60	2.07	1.60	1.70	1.78
oowercore® M1000-65A	M1000-65A	0.65	7.80	10.00	4.40	5.75	2.53	1.61	1.71	1.80
oowercore® M600-100A	M600-100A	1.00	7.60	6.00	2.60	3.45	1.49	1.53	1.63	1.72
oowercore® M700-100A	M700-100A	1.00	7.65	7.00	3.00	4.02	1.72	1.54	1.64	1.73
oowercore® M800-100A	M800-100A	1.00	7.70	8.00	3.60	4.60	2.07	1.56	1.66	1.75
oowercore [®] 940-100A	Special mill grade	1.00	7.80	9.40	4.20	5.40	2.41	1.58	1.68	1.78
oowercore® M1000-100A	M1000-100A	1.00	7.80	10.00	4.40	5.75	2.53	1.58	1.68	1.76
oowercore [®] M1300-100A	M1300-100A	1.00	7.80	13.00	5.80	7.47	3.33	1.60	1.70	1.78

Fhickness	powercore® grade	Grade as per	Grade as per	Grade as per	Grade as per	Grade as per	Grade as per
mm]		DIN EN 10106	IEC 60404-8-4	JIS C 2552	ASTM A 677 M	ASTM A 677	former
		1996	1988	1986	1989	1989	AISI designation
	M235-35A	M235-35A	_	35-A-230	_	_	_
	M250-35A	M250-35A	250-35-A5	35-A-250	36F 320M	36F 145	M-15
).35	M270-35A	M270-35A	270-35-A5	35-A-270	36F 348M	36F 158	M-19
	M300-35A	M300-35A	300-35-A5	35-A-300	36F 370M/397M	36F 168/180	M-22/M-27
	M330-35A	M330-35A	330-35-A5	_	36F 419M	36F 190	M-36
	M250-50A	M250-50A	_	_	_	_	_
	M270-50A	M270-50A	270-50-A 5	50-A-270	47F 370M	47F 168	M-15
	M290-50A	M290-50A	290-50-A 5	50-A-290	47F 384M	47F 174	M-19
	M310-50A	M310-50A	310-50-A 5	50-A-310	47F 408M/419M	47F 185/190	M-22/M-27
	M330-50A	M330-50A	330-50-A 5	50-A-330	47F 452M	47F 205	M-36
	M350-50A	M350-50A	350-50-A 5	50-A-350	47F 507M	47F 230	M-43
.50	M400-50A	M400-50A	400-50-A 5	50-A-400	47F 617M	47F 280	_
	M470-50A	M470-50A	470-50-A 5	50-A-470	47F 672M	47F 305	M-45
	M530-50A	M530-50A	530-50-A 5	_	_	_	_
	M600-50A	M600-50A	600-50-A 5	50-A-600	47F 882M	47F 400	M-47
	M700-50A	M700-50A	700-50-A 5	50-A-700	47F 992M	47F 450	_
	M800-50A	M800-50A	800-50-A 5	50-A-800	_	_	_
	M940-50A	M940-50A	_	50-A-1000	_	_	_
	M310-65A	M310-65A	_	_	_	_	_
	M330-65A	M330-65A	_	_	_	_	_
	M350-65A	M350-65A	350-65-A 5	_	64F 459M/480M	64F 208/218	M-19/M-22
	M400-65A	M400-65A	400-65-A 5	_	64F 496M/529M	64F 225/240	M-27/M-36
	M470-65A	M470-65A	470-65-A 5	_	64F 595M	64F 270	M-43
.65	M530-65A	M530-65A	530-65-A 5	_	64F 705M	64F 320	_
	M600-65A	M600-65A	600-65-A 5	_	64F 792M	64F 360	M-45
	M700-65A	M700-65A	700-65-A 5	_	64F 882	64F 400	_
	M800-65A	M800-65A	800-65-A 5	65-A-800	64F 1078M	64F 490	M-47
	M1000-65A	_	1000-65-A 5	65-A-1000	_	_	_
	M600-100A	M600-100A	_	_	_	_	_
	M700-100A	M700-100A	_	_	_	_	_
	M800-100A	M800-100A	_	_	_	_	_
.00	940-100A	_	_	_	_	_	_
	M1000-100A	M1000-100A	_	_	_	_	_
	M1300-100A	M1300-100A	_	_	_	_	_

Electrical steel for e-mobility and high frequencies

The grades for e-mobility and high frequencies are ideal for use in highly efficient automotive drive systems. The steel grade features very good processing properties, providing advantages in final application regardless of whether it is used in hybrid or electric vehicles.

Electrical steel (NO) – For e-mobility and high frequencies

		Thick- ness	Density	Max. Core loss	Min. Polariza	ation		Min. yield strength as per DIN EN ISO 6892-1
		[mm]	[kg/dm³]	[W/kg] at	[T] at			$R_{{}_{p0,2}}$ in the rolling direction at room temperature
				400 Hz	2,500	5,000	10,000	
				1.0 T	[A/m]	[A/m]	[A/m]	[MPa]
According to EN 10303								
Steel grade designation	Standard desig	nation						
powercore® traction 020-130Y320	NO20-13	0.20	7.60	13	1.48	1.59	1.69	320
powercore® traction 020-130Y350	NO20-13	0.20	7.60	13	1.48	1.59	1.69	350
powercore [®] traction 020-150Y320	NO20-15	0.20	7.60	15	1.48	1.59	1.69	320
powercore® traction 025-140Y400	NO25-14	0.25	7.60	14	1.52	1.61	1.71	400
powercore® traction 027-140Y420	NO27-15	0.27	7.60	14	1.51	1.61	1.73	420
powercore® traction 027-150Y370*	NO27-15	0.27	7.60	15	1.52	1.61	1.73	370
powercore® traction 027-150Y420*	NO27-15	0.27	7.60	15	1.52	1.61	1.73	420
powercore [®] traction 027-180Y370*	NO27-18	0.27	7.60	18	1.52	1.61	1.73	370
powercore® traction 030-150Y420*	NO30-16	0.30	7.60	15	1.52	1.61	1.73	420
powercore® traction 030-160Y420*	NO30-16	0.30	7.60	16	1.52	1.61	1.73	420
powercore® traction 032-190Y330*	NO35-19	0.32	7.65	19	1.52	1.62	1.74	330
powercore® traction 035-170Y420*	NO35-19	0.35	7.60	17	1.52	1.61	1.73	420
powercore® traction 035-180Y400	NO35-19	0.35	7.60	18	1.52	1.61	1.73	400
powercore® traction 035-190Y390	N035-22	0.35	7.60	19	1.52	1.61	1.73	390
powercore® traction 035-220Y330	N035-22	0.35	7.65	22	1.52	1.62	1.74	330
powercore® traction 035-220Y300	N035-22	0.35	7.65	22	1.55	1.64	1.76	300

* Steel grades stand out on account of their excellent further processing properties and advantages with regard to their final applications.

More detailed information on properties and processing can be found in our production information brochures at www.thyssenkrupp-steel.com.

powercore[®] AP grades

powercore[®] AP grades display a more favorable texture in the sheet plane thanks to the use of special production technology.

This texture results in higher polarization values. AP grades can be magnetized more easily at medium field strengths. Their special chemical composition also provides improved thermal conductivity.

Electrical steel (NO) – Highly permeable grades fully finished

		Thickness	Density	Max. Co	re loss			Min. Po	larization	
		[mm]	[kg/dm³]	n³] [W/kg] at		[W/lb] at		[T] at		
				50 Hz		60 Hz		2,500	5,000	10,000
				1.5 T	1.0 T	1.5 T	1.0 T	[A/m]	[A/m]	[A/m]
Steel grade designation	Standard designation									
powercore® 330-35AP	Special mill grade	0.35	7.65	3.30	1.30	1.90	0.75	1.55	1.64	1.76
powercore [®] 440-35AP	Special mill grade	0.35	7.80	4.40	2.10	2.53	1.21	1.62	1.71	1.82
powercore® 330-50AP	Special mill grade	0.50	7.65	3.30	1.35	1.90	0.78	1.57	1.67	1.79
powercore® 400-50AP	Special mill grade	0.50	7.70	4.00	1.70	2.30	0.98	1.61	1.70	1.81
powercore® 530-50AP	Special mill grade	0.50	7.80	5.30	2.30	3.05	1.32	1.65	1.74	1.84
powercore® 700-50AP	Special mill grade	0.50	7.85	7.00	3.00	4.02	1.72	1.68	1.76	1.87
powercore® 350-65AP	Special mill grade	0.65	7.60	3.50	1.50	2.01	0.86	1.57	1.67	1.79
powercore® 470-65AP	Special mill grade	0.65	7.75	4.70	2.20	2.70	1.26	1.61	1.70	1.81
powercore® 600-65AP	Special mill grade	0.65	7.80	6.00	2.60	3.45	1.49	1.64	1.73	1.83
powercore® 800-65AP	Special mill grade	0.65	7.85	8.00	3.60	4.60	2.07	1.68	1.76	1.87
powercore® 1400-100AP	Special mill grade	1.00	7.85	14.00	5.50	8.05	3.16	1.68	1.76	1.87

powercore[®] PP grades

powercore[®] PP grades display a favorable isotropic texture in the sheet plane thanks to the use of special production technology.

This texture results in higher polarization values. PP grades can be magnetized more easily at medium and high field strengths. Their special chemical composition also provides improved thermal conductivity. The magnetic properties are controlled by annealing individual laminations or complete stacks at the customer's plant – resulting in very high magnetic conductivity at very low losses.

Electrical steel (NO)) – Highly permeable	grades non	-fully finis	shed						
		Thickness	Density	Max. Co	ore loss*			Min. Pol	arization*	
		[mm]	[kg/dm³]	[W/kg] a	at	[W/Ib] a	t	[T] at		
				50 Hz		60 Hz		2,500	5,000	10,000
				1.5 T	1.0 T	1.5 T	1.0 T	[A/m]	[A/m]	[A/m]
Steel grade designation	Standard designation									
powercore® 235-35PP	Special mill grade	0.35	7.60	2.35	0.95	1.35	0.55	1.49	1.60	1.70
powercore [®] 280-35PP	Special mill grade	0.35	7.60	2.80	1.10	1.61	0.63	1.49	1.60	1.70
powercore® 330-35PP	Special mill grade	0.35	7.65	3.30	1.30	1.90	0.75	1.49	1.60	1.70
powercore [®] 270-50PP	Special mill grade	0.50	7.70	2.70	1.16	1.55	0.67	1.61	1.70	1.81
powercore® 330-50PP	Special mill grade	0.50	7.75	3.30	1.60	1.90	0.92	1.61	1.70	1.81
powercore® 390-50PP	Special mill grade	0.50	7.80	3.90	1.70	2.24	0.98	1.60	1.68	1.78
powercore [®] 450-50PP	Special mill grade	0.50	7.80	4.50	2.00	2.58	1.15	1.60	1.68	1.78
powercore® 660-50PP	Special mill grade	0.50	7.85	6.60	3.00	3.79	1.72	1.68	1.76	1.86
powercore [®] 800-65PP	Special mill grade	0.65	7.85	8.00	3.50	4.60	2.01	1.68	1.75	1.87

*Following reference annealing on the lines of DIN EN 10341.

powercore[®] K grades

Semi-processed powercore[®] grades display good processing properties in the as-delivered condition.

The magnetic properties are controlled by annealing the individual laminations or complete stacks at the customer's plant. In many cases, core losses are lower and polarization values higher than specified in the standards.

		Thickness	Density	Max. Co	re loss *			Min. Polarization *		
		[mm]	[kg/dm³]	[kg/dm³] [W/kg] at 50 Hz		[W/lb] at 60 Hz		[T] at		
								2,500	5,000	10,000
				1.5 T	1.0 T	1.5 T	1.0 T	[A/m]	[A/m]	[A/m]
DIN EN 10341 Steel grade designation	Standard designation									
Steel grade designation										
		0.50	7.85	8.90	3.70	5.12	2.13	1.60	1.68	1.78
powercore® M890-50K	M890-50K									
	M890-50K M1050-50K	0.50	7.85	10.50	4.30	6.04	2.47	1.57	1.65	1.77
powercore® M890-50K powercore® M1050-50K powercore® M800-65K		0.50 0.65	7.85 7.85	10.50 8.00	4.30 3.30	6.04 4.60	2.47 1.90	1.57 1.62	1.65 1.70	1.77 1.79

* Following reference annealing on the lines of DIN EN 10341.

Thickness	powercore® grade	Grade as per	Grade as per	Grade as per	Grade as per	Grade as per	Grade as per
[mm]		DIN EN 10341	DIN EN 10126 DIN EN 10165	IEC 60404-8 2/3	ASTM A 683 M	ASTM A 683	former
		2006	1996	1988	1984	1984	AISI designation
	_	-	_	_	47S392M	47S178	M-27
	M340-50K	M340-50K	M340-50E	M340-50E5	47S414M/441M	47S188/200	M-36/M-43
	M390-50K	M390-50K	M390-50E	M390-50E5	47S507M	47S230	_
	M450-50K	M450-50K	M450-50E	M450-50E5	47S551M	47S250	M-45
).50	M560-50K	M560-50K	M560-50E	M560-50E5	47S661M	47\$300	_
	M660-50K	M660-50K	M660-50D	M660-50D5	_	_	-
	M890-50K	M890-50K	M890-50D	M890-50D5	_	_	_
	M1050-50K	M1050-50K	M1050-50D	M1050-50D5	_	_	_
	M390-65K	M390-65K	M390-65E	M390-65E5	64S470M/507M	64S213/230	M-36/M-43
	M450-65K	M450-65K	M450-65E	M450-65E5	64S573M	64S260	-
	M520-65K	M520-65K	M520-65E	M520-65E5	64S617M	64S280	M-45
0.65	M630-65K	M630-65K	M630-65E	M630-65E5	64S772M	64S350	_
	M800-65K	M800-65K	M800-65D	M800-65D5	_	_	-
	M1000-65K	M1000-65K	M1000-65D	M1000-65D5	-	_	_
	M1200-65K	M1200-65K	M1200-65D	M1200-65D5	_	_	_

Insulation coatings

			0 1			^ ·
	Insulation type	Coating	Color ¹	Improvement in punchability ²	Suitability for the annealing of laminations as per DIN EN 10341	Corrosion resistance as per DIN EN ISO 6270-2 AHT ³
IEC 60 404-1-1						
Designation						
stabolit® 10	organic	both sides	yellow-green	very good	-	good
stabolit® 20	inorganic with organic components	both sides	colorless	very good	yes	satisfactory
stabolit® 30	inorganic	both sides	light gray	good	yes	satisfactory
stabolit® 60	inorganic with organic components, pigmented	one and both sides	gray	good	yes	satisfactory
stabolit [®] 70	organic bonding lacquer	one and both sides	colorless	_	_	_

1) Color deviations are possible without

affecting the properties.

2) In comparison to uncoated material.

 AHT = condensation atmosphere with alternating humidity and air temperature. 4) SEP = Stahl-Eisen-Prüfblatt (steel-iron test sheet).

 5) At room temperature as per ASTM A717.
6) To avoid premature corrosion, the oil content of water-dilutable lubrication must be higher than 5% (max. time in stock for lamination five days). 7) Depending on steel surface and

coating thickness. 8) Resistant to annealing according to DIN EN 10126

\ominus stabolit[®] 10

offers high surface insulation resistance, and is therefore ideal for small transformers with cores that are assembled by clamping, riveting, or similar. Significantly improved stampability (up to three times longer die life) compared with uncoated dry-stamped electrical steel.

→ stabolit[®] 20

has high elevated-temperature strength and very good weldability and is ideal for small and medium-size machines as well as miniature transformers, also with welded cores. It provides significantly improved punchability and adequate insulation resistance despite its low coating thickness.

\ominus stabolit[®] 30

is a classic anti-stick coating. Its high elevated-temperature strength and very good weldability make it ideal for small and medium-size motors as well as miniature transformers, also with welded cores. It provides adequate insulation resistance despite its low coating thickness. \supset

More detailed information on insulation coatings can be found in our production information brochures at www.thyssenkrupp-steel.com.

Degree of rusting as per DIN EN ISO 4628-3	Weldability (TIG) as per SEP ⁴ 1210	Temperature resistance in air as per DIN IEC 60404-12	Classification as per international standards	Coating thickness per side [µm]	Insulation resistance⁵ [Ω cm²/lamination]
				0.50-1.50	>5
Ri O	-	permanently 180°C	EC-3	2.50-4.50	>20
				3.00-5.00	> 50
				max. 1.00	>2
Ri 0 ⁶	Up to 1,000 mm/min at 125 A	permanently 210°C short time 30 min at 600°C	EC-5-P chrome-free C-5	0.50-1.50	> 5
	dt 125A		0-0	1.50-2.50	> 50
Ri 0 to Ri 3 ⁷	> 1,000 mm/min	permanently 300°C ⁸	EC-4 C-4 or C-4-AS	0.50-1.00	> 5
Ri O to Ri 37	Up to 1,000 mm/min (at 1.5 µm thickness)	permanently 270°C 2,500 h at 300°C or 30 min at 600°C	EC-5 C-5	1.00-3.00	>15
				3.00-5.00 (water s	oluble)
_	_	-	-	4.00-6.00 (water s	oluble)

With stabolit[®] 70, it must be ensured that the max. storage temperature of 40 °C and also the max. processing time fo 6 months are not exceeded. The adhesive properties decrease with increasing storage time.

\ominus stabolit[®] 60

is a pigmented organic-inorganic insulation coating. It displays very good weldability and punchability at low coating thicknesses. Other properties of note include corrosion protection and high elevated-temperature strength. This insulation coating is therefore ideal for all processing operations in which the material is exposed to thermal stresses, e.g. welding, die casting, or stress relief annealing. It can also be used as an antistick coating.

\ominus stabolit[®] 70

was developed to adhesively bond laminations into stacks and is therefore the ideal solution in cases where other assembly methods would cause unacceptable magnetic disturbances (for example in stepping motors, linear motors, or large magnets). Stacks bonded with stabolit® 70 can also be used as "active end plates" in mediumsize and large machines and in large deflection systems. Please note that bonding strength may be reduced at temperatures over 100 °C. In addition, roller peel values depend on the silicon content of the substrate. Processing information is available on request.

stabosol[®] – Adhesive system for large-scale automotive production

Highly reactive adhesive system for joining and insulating the laminations without damage: Reduction of motor loss up to 16%

Inline bonding directly in the die is possible

Compared to baking varnish, faster curing at lower temperature with shorter process: approx. 75% time saving

Advantages for the OEM

- · Higher motor efficiency; more vehicle range
- · Increased mechanical load capacity in handling
- Higher stacking factor
- Better thermal management
- Interlamellar corrosion protection

Advantages for the stamper

- · Continuous, high-volume punching and stacking process
- No additional oven required
- Tooling costs comparable with punching
- · Tool and press line space requirements as for die stacking
- Tool contamination at the level of baking varnish
- With existing oven capacities: capacity increase and cost reduction without investment

Areas of application

stabosol[®] denominates a special highly reactive adhesive and insulating varnish for the coating of electrical steel intended for the manufacture of rotor and stator packets in large-scale electric motor production. The product has the ability to stably bond the full surface of laminations punched for stack assembly in a short and energetically advantageous series production process. In contrast to the processes commonly used in large-scale production, such as interlocking and welding, the material properties of the electrical steel strip are optimally maintained for the final motor product.

With stabosol[®], the disadvantageous effects of joining the laminations in the form of material damage and short circuits are avoided. In this way, eddy current losses and disturbances in the magnetic flux can be minimized, and thus electric motors with significantly higher efficiency and power density can be built. In contrast to other established bonding solutions, e.g. with baking varnishes, stack assembly with the highly reactive stabosol[®] bonding system is also characterized by a particularly short cycle time suitable for large-scale production as well as for a continuous process that is not interrupted by oven storage.

Coating thicknes	ss and application	method as delivered (bot	h sides)
Coating thickness	Application	State of delivery	Storage capability (without reduction of adhesion and processing properties)
2.5 µm	Outer side	dry	Sheets stackable, coils rewindable, 6 months at room temperature
4.0 μm	Inner side	dry	Sheets stackable, coils rewindable, 6 months at room temperature

Process sequence and variants Variant 1: Today's standard process (Discontinuous process with oven storage)

Punched parts can be produced from an electrical steel strip coated with stabosol[®] in the same way as a classic adhesive stacking process.

After punching and stacking, the sheets are bonded together in a separate oven process by applying pressure and temperature to form the stack. During this process, the previously dry adhesive layer softens, bonds the laminations together and finally hardens.

Compared to baking varnishes, the special chemical formulation of stabosol[®] enables a significant reduction in the required activation energy and reaction time until the lamella stack has reached handling strength. Overall, the cycle time can be reduced by up to 75% when compared to conventional baking varnishes due to the lower temperature required and the associated reduction in oven dwell time.

The risk of the coating being squeezed out at the side and subsequent reworking effort is also significantly reduced due to the high reactivity when compared to standard baking varnishes – even at excessive process temperatures.

At the same time, stabosol[®] is characterized by an extended process window in terms of temperature and processing time in contrast to baking varnishes.

Variant 2: New inline process (Continuous process with integrated activation in the punching tool)

A particularly advantageous second process variant is the continuous, layer-by-layer bonding of the lamellae already in the die-cutting sequence process in the area of the stacking unit. For this purpose, each subsequent lamella is irradiated by a short high-energy infrared light pulse and thus activated. Immediately after activation, it is placed on the stack being built up and joined with contact pressure.

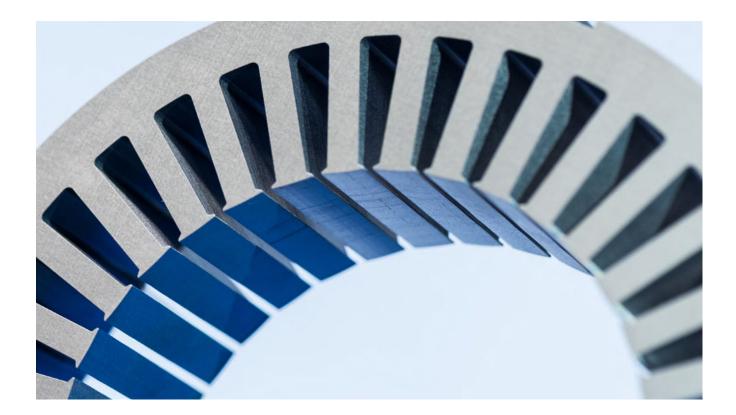
The stack of sheets is bonded layer by layer in the cycle of the punching tool, thus dispensing with any subsequent separate oven exposure. In a subsequent second processing step, which has no negative effect on the cycle time, the stack must be re-compacted for full retention of the handling strength. Optionally, additional heat can be introduced during compaction.

In this process variant, cycle times of approx. 160 strokes/min can be achieved, proving that adhesive packaging using stabosol[®] is competitive with established processes in large-series production such as interlocking or welding, but without adopting their disadvantages.

Thanks to the special product properties of stabosol[®], it is thus possible to achieve optimal end product properties, significantly reduced process costs and capacity increases compared to today's standard process. This means that stabosol[®] is not limited to the production of small machines and/or series, but is ideally suited for large quantities in electromobility.

stabosol[®] properties

Adhesion of the joint


When bonding two sheet metal strips with stabosol[®] in accordance with the requirements, the tensile shear test shows that separation is generally only triggered by the plastic flow of the substrate material starting in the yield point range.Depending on the Si content and taking into account that stabosol[®] sheets are coated on both sides, the shear values are as follows:

- 027-150Y420 with > 4 N/mm²
- 032-190Y330 with > 4 N/mm²
- M800-65A with > 6 N/mm²

The shear values are reference values determined according to DIN EN 1465.

Thermal behavior in the bonded stack

To test the stability of bonded sheet packages, individually bonded two sheets were bonded to form a sandwich sheet and subjected to a continuous temperature load at 180 °C for a period of 5,000 hours. Subsequently, the adhesion properties of bonded joints made from these sheets were investigated in a tensile shear test according to DIN EN 1465 at 20 °C (RT). This showed that there was no loss of strength when compared to the initial state. In contrast to stabolit[®] 70, stabosol[®] is characterized by a significantly higher residual tensile shear strength in the bonded joint, even at high temperatures. The reduction in strength at 180 °C is only approx. 30 % when compared to RT. Application-specific loading temperatures above 180 °C must be ensured by testing.

Resistance to aggressive media

stabosol[®] is resistant to common types of oil. The not yet bonded coating is not solvent resistant.

Surface condition

The coated surface must be free from grease. In cases of contamination, the cleanability must be checked in each individual case.

Insulation resistance

During bonding, individual contact areas between the lamellae may occur – depending on the amount of pressure exerted. It is not possible to determine the surface resistance for the as-delivered condition, as stabosol[®] has not yet been finally chemically cross-linked. If the process is carried out correctly, stabosol[®] is characterized by a familiar insulating effect known in common insulating varnishes.

Shelf life

At temperatures below 20 °C and in dry storage, the shelf life is at least 6 months. At temperatures below 30 °C and in dry storage, the shelf life is at least 4 months. The prerequisite for this is that direct sunlight or UV radiation as well as temperatures falling below the dew point are avoided. Temperatures above 30 °C should be avoided as the shelf life decreases. Temperatures up to 60 °C are possible in the short term.

Width/thickness variations and geometric properties

Width variations

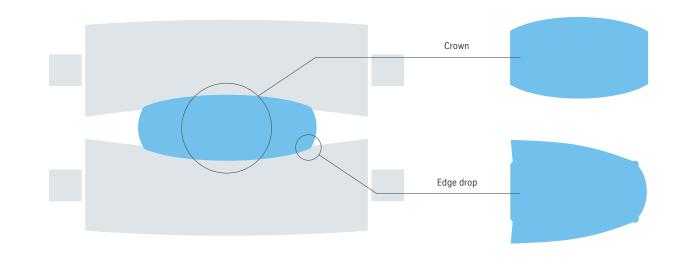
Strip width	Narrow strip	Wide strip	
[mm]	30* to 500	Edge trimmed	Mill edge 700 to 1,250
		500 to 1,250	
≤300	0/+0.2	_	_
>300-500	0/+0.3	_	_
500-600	_	0/+0.5	_
>600-1,000	_	0/+1.0	0/+10.0
> 1,000-1,250	_	0/+1.5	0/+10.0

*Narrower on request.

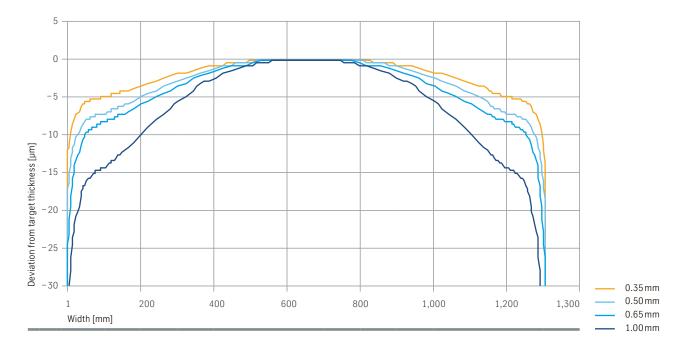
Thickness variations				
	Nominal thickness [mm]			
	0.35	0.50	0.65	1.00
Max. variation from thickness	±8%	±6%	±5%	±5%
Max. thickness variation parallel to rolling direction over a gauge length of 1 m	6%	4%	4%	4%
Max. thickness variation perpendicular to rolling direction, measured at least 30 mm from edge	0.02 mm	0.02 mm	0.03 mm	0.03 mm

Electrical steel for e-mobility and high frequencies according to DIN EN 10303.

Geometric properties

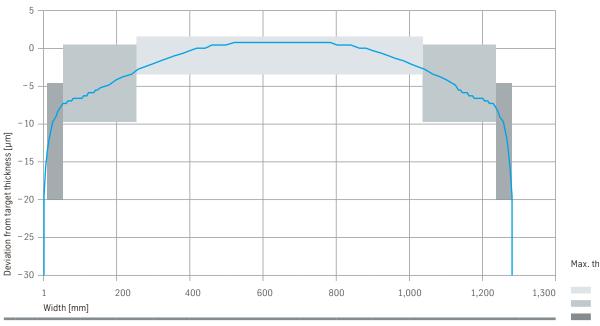

	Guaranteed value	
	Fully finished	Semi-finished
Max. burr height	0.03 mm	0.03 mm
Max. waviness for product width > 100 mm with trimmed edges	1.5%	1.5%
mill edges	2.0%	2.0%
Max. camber for products > 100 mm and nominal thickness \leq 0.65 mm to DIN EN 10251	35 mm	_
Max. edge camber to DIN EN 10251		
over 1 m gauge length for strip widths > 30–150 mm	1.0 mm	_
>150mm	0.5 mm	-
On 1 m gauge length for products with trimmed edges		4.0 mm
mill edges	-	6.0mm
Max. deviation from shearing line per 1 m gauge length for products		
>150mm	2.0 mm	_

Electrical steel (NO) – Dimensions		
	Width [mm]	
Narrow strip		
Inside diameter 508 mm	30-500*	
Wide strip		
Inside diameter 508 mm and 610 mm	500-1,250	


*Narrower on request.

Development of crown and edge drop at hot rolling and cold rolling

Work roll bending and embedding of the strip



Cold strip shape depending on the final thickness

Optimized slitting schedule (nominal thickness 0.5 mm)

5 μm/400 mm 10 μm/200 mm 15 μm/50 mm

Conversion table

	in	to be multiplied by	to obtain
Size			
	$T = Wb/m^2 = Vs/m^2$	10 ⁻⁴	Wb/cm ² = Vs/cm ²
Magnetic flux density B/ magnetic polarization J	Т	104	G
	Т	6.45×10 ⁴	lines/square inch
	Vs/cm ²	104	Т
	G	10 ⁻⁴	Т
	lines/square inch	1.55×10 ⁻⁵	Т
	A/m	0.01	A/cm
	A/m	0.01257	Oe
	A/m	0.0254	Ampere-turns/inch
lagnetic field strength H	A/cm	100	A/m
	Oe	79.6	A/m
	Ampere-turns/inch	39.37	A/m
Core loss	W/kg	0.4536	W/lb
	W/lb	2.20462	W/kg
	W/kg (50Hz)	1.266	W/kg (60 Hz)
	W/kg (60Hz)	0.79	W/kg (50Hz)
	cm	0.3937	inch
Length L	inch	2.54	cm
A A	cm ²	0.155	square inch
Area A	square inch	6.45	cm ²
	cm³	0.061	cubic inch
Volume V	cubic inch	16.4	cm³
	g	0.0353	ounce
	kg	2.20462	pound
Mass m	ounce	28.35	g
	pound	0.4536	kg
Force F	$N = kgm/s^2$	0.102	kp
	kp	9.81	$N = kgm/s^2$
Stress σ	N/mm ²	0.102	kp/mm ²
	N/mm ²	145	psi
	kp/mm²	9.81	N/mm²
	psi	6.90×10 ⁻³	N/mm²
	C	×1.8+32	°F
Temperature T	°F	×0.556-17.8	°C

Steel

thyssenkrupp Steel Europe AG Kaiser-Wilhelm-Strasse 100 47166 Duisburg, Germany P: +49 203 52-0 F: +49 203 52-25102 www.thyssenkrupp-steel.com info.steel@thyssenkrupp.com

Automotive

Sales NO P: +49 203 52-24627 info.auto@thyssenkrupp.com

engineering.tomorrow.together.