thyssenkrupp is embarking on two parallel and equally important technological paths in order to produce climate neutral steel by 2050: avoiding CO₂ through the use of hydrogen and utilizing CO₂ through Carbon2Chem® technology.

Avoiding CO₂ (hydrogen method)

Starting in 2019
The test
thyssenkrupp will gradually replace pulverized coal in one blast furnace (BF) with hydrogen (H₂).

Starting in 2022
The introductory phase
Step by step, all three blast furnaces (BF) will be transitioned to H₂ injection.

Starting in 2024
The milestone
Using large-scale direct reduction plants (DR) which will be operated using green H₂, thyssenkrupp will produce sponge iron which will then proceed to the blast furnaces (BF) for processing, allowing a further reduction in emissions.

Using CO₂ (Carbon2Chem®)

Starting in 2020
Industrialization
The pilot system at the Duisburg steel plant will use steel mill gases to produce base chemicals.

Starting in 2025
The breakthrough
CO₂ will be used as a raw material in an industrial-scale plant. The Carbon2Chem® technology is also useful in other industries, for example the cement industry.

2025 to 2050
Transformation to climate neutral steel production
Using electric arc furnaces (EAF), thyssenkrupp will process sponge iron into climate neutral crude steel using electricity from renewable energy sources.

2018
The world first
The concept: CO₂ becomes raw materials. In September 2018, thyssenkrupp produced ammonia from steel mill gases for the first time at its Carbon2Chem® technical center in Duisburg.

2018
The world first
The world’s first time thyssenkrupp produced ammonia from CO₂ using Carbon2Chem® technology.